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Abstract

Acinetobacter baumannii has emerged as a major pathogen responsible for healthcare-associated
infections, particularly in intensive care units, contributing to significant morbidity and
mortality due to its multidrug resistance and ability to persist in clinical environments. This
study aimed to investigate the phenotypic and genomic characteristics of all multidrug-
resistant A. baumannii isolates collected between January and June 2022 from two tertiary
care hospitals in Thessaloniki, Greece. A total of 40 isolates were included. All isolates
exhibited resistance to colistin; however, none harbored the mcr-1 to mcr-9 genes, as confirmed
by polymerase chain reaction (PCR). PCR-based screening for virulence-associated genes
revealed high prevalence rates of basD (100%), pld (95%), csuE (87.5%), and bap (77.5%). In
contrast, ompA and pglC were not detected. Twitching motility ranged from 2 to 50 mm, with
25% of the isolates classified as non-motile and 20% as highly motile. Swarming motility
was observed in all strains. Additionally, all isolates demonstrated positive a-hemolysis,
suggesting a potential virulence mechanism involving tissue damage and iron acquisition.
Pulsed-field gel electrophoresis (PFGE) revealed significant genomic diversity among the
isolates, indicating a low likelihood of patient-to-patient or clonal transmission within the
hospital setting. These findings highlight the complex relationship between antimicrobial
resistance and virulence in clinical A. baumannii isolates and emphasize the urgent need for
robust infection control strategies and continued microbiological surveillance.

Keywords: Acinetobacter baumannii; colistin resistant; mcr genes; virulence genes; PFGE

1. Introduction

A. baumannii is increasingly acknowledged as a critically important Gram-negative
pathogen due to its prevalence and multidrug resistance in contemporary clinical environ-
ments. The capacity to persist under harsh environmental conditions and its rapidly evolving

Pathogens 2025, 14, 730

https://doi.org/10.3390 / pathogens14080730


https://doi.org/10.3390/pathogens14080730
https://doi.org/10.3390/pathogens14080730
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0000-0002-7434-2092
https://orcid.org/0009-0006-9508-0737
https://orcid.org/0000-0001-5639-0528
https://orcid.org/0000-0002-8804-239X
https://orcid.org/0000-0003-0979-3871
https://doi.org/10.3390/pathogens14080730
https://www.mdpi.com/article/10.3390/pathogens14080730?type=check_update&version=1

Pathogens 2025, 14, 730

2 of 14

resistance profile make it particularly challenging to manage. Although traditionally labeled
as non-motile, accumulating evidence now highlights a range of alternative strategies that
contribute to its survival and dissemination in healthcare environments. A. baumannii is
clinically associated with a wide range of refractory infections, notably ventilator-associated
pneumonia (VAP), bloodstream infections, meningitis, and wound infections [1,2]. Given
these characteristics, it is unsurprising that both the World Health Organization (WHO) and
the Centers for Disease Control and Prevention (CDC) have designated A. baumannii as a
critical priority pathogen for the development of new antimicrobial agents [3].

Patients are particularly vulnerable to A. baumannii infections—especially multidrug-
resistant and colistin-resistant strains—due to several key risk factors. As highlighted by
Vrysis et al. [4], prior use of broad-spectrum antibiotics, especially carbapenems, plays a
major role in resistance development. Additional risks include ICU-related interventions
like mechanical ventilation, prolonged hospitalization, and the use of invasive devices
such as urinary or central venous catheters. High illness severity, indicated by scores like
APACHE II and SOFA, further increases susceptibility. These factors underscore the need
for strict antimicrobial stewardship, careful use of invasive procedures, and robust infection
control to prevent resistant A. baumannii infections.

In countries like Greece, where our study was conducted, resistance rates to key
antimicrobials such as carbapenems and polymyxins are alarmingly high, often surpass-
ing 50% [5]. Colistin has served as a last-line therapeutic option for infections caused
by multidrug-resistant (MDR) A. baumannii. However, the recent emergence of colistin
resistance poses a significant clinical challenge. The underlying resistance mechanisms are
primarily chromosomal in nature and involve structural modifications or complete loss
of lipopolysaccharides (LPSs), which disrupt colistin’s interaction with the bacterial outer
membrane [6-8]. In parallel, the identification of plasmid-mediated colistin resistance (mcr)
genes has introduced a concerning dimension to the threat, as these elements facilitate hori-
zontal gene transfer and the rapid dissemination of resistance across bacterial populations.
Ten mcr families (mcr-1 to mcr-10) have been identified globally, mostly in Escherichia coli
but also in A. baumannii strains, with mcr-1 and mcr-4.3 being the most reported [9-12].
Although the clinical impact of mcr genes is still under investigation, their presence un-
derscores the need for rigorous molecular surveillance to monitor their dissemination and
potential contribution to treatment failure [13-15]. Beyond resistance, A. baumannii exploits
many virulent factors that enhance its biological resistance. Biofilm formation is one of the
most critical features contributing to chronic infections and treatment failure. The process
includes adhesion to surfaces, microcolony development, and production of a protective
extracellular matrix, largely driven by quorum sensing [16-19].

Several genes have been associated with biofilm formation and pathogenicity in A. bau-
mannii. The bap gene encodes a biofilm-associated protein essential for biofilm maturation
and stability, while csuE is involved in pili assembly, which is necessary for the initial at-
tachment to surfaces. Outer membrane proteins such as ompA and omp33-36 contribute
to adhesion, host cell invasion, and immune evasion. The bauA and basD genes are part
of the acinetobactin-mediated iron uptake system, which is crucial for bacterial survival
in iron-limited host environments. The pld gene encodes phospholipase D, a virulence
factor primarily associated with phospholipid degradation, tissue damage, and immune
evasion. Although not directly implicated in biofilm regulation, it may support persistence
under hostile conditions. Additionally, the pgIC gene is involved in capsule biosynthesis,
which may contribute to immune evasion and environmental resilience, though its direct
role in biofilm development remains uncertain [11-14,20-25]. Some bacteria, such as A.
baumannii, have developed specialized motility mechanisms that enhance their survival
and pathogenicity in various environments. Through specialized structures, A. baumannii
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moves on solid and liquid surfaces using swarming, sliding, and twitching motions [26].
Although previously considered non-motile due to the absence of flagella [27], recent stud-
ies have shown that it uses type IV pili, with the pilA gene playing an important role in their
assembly, for twitching motility [16,28-30], while surface-associated motility depends on
1,3-diaminopropane (1,3-DAP) and does not require flagella. These mechanisms contribute
to bacterial dissemination and evasion of the host immune system [16,28,31]. Additionally,
hemolytic activity enables the release of iron and other nutrients from host cells, further
supporting bacterial growth in vivo [26,32,33].

Molecular epidemiology tools such as PFGE are commonly employed to assess the
clonal relatedness of clinical A. baumannii isolates and trace the spread of MDR clones within
healthcare settings [34]. Given the clinical significance and epidemiological complexity of
MDR A. baumannii, continuous monitoring of both resistance mechanisms and virulence
profiles is essential to guide effective infection control policies.

The aim of this study was to investigate and characterize all colistin and multidrug-
resistant A. baumannii strains isolated over a six-month period through the hospital surveil-
lance system from two tertiary care hospitals in Thessaloniki, Greece, during 2022. This
analysis sought to better understand their resistance mechanisms, virulence traits, and
genetic relatedness in order to inform and guide appropriate infection control measures
if needed.

2. Materials and Methods
2.1. Sampling and Selection Process

The prospective study was conducted in two tertiary hospitals in Thessaloniki, Greece.
Data were collected from the laboratory’s database to ensure the accuracy and completeness
of the analysis.

For the purposes of this study, two tertiary care hospitals located in Thessaloniki,
Greece, were selected for sampling: Hippokration General Hospital, a major public health-
care facility with approximately 900 inpatient beds (hospital A), and General Hospital G.
Papanikolaou, which has a capacity of approximately 750 beds (hospital B). This study
was approved by the Institutional Medical Scientific Council of the hospitals (approval
protocol number of Hippokration General Hospital: 9336/24-2-2022; approval protocol
number of Papanikolaou General Hospital: 557/14-4-2022). Multidrug-resistant A. bauman-
nii (MDRAB) isolates were obtained according to the following inclusion criteria: (i) isolates
recovered from hospitalized patients between 1 January and 30 June 2022; (ii) isolates
collected from all hospital wards; (iii) only one isolate per patient was included, specifically
the first MDRAB isolate identified during the hospitalization period; (iv) only A. baumannii
isolates exhibiting a multidrug-resistant phenotype and resistance to colistin.

2.2. Antimicrobial Susceptibility Testing

Antimicrobial susceptibility testing was performed in duplicate using the Biomerieux
VITEK 2 microbial identification system (bioMérieux, Marcy 1'Etoile, France). Colistin
susceptibility was further performed using the microdilution method (microdilution colistin
broth sensitivity). Colistin susceptibility was also confirmed by the quantitative MIC
determination method using the e-test from Lioflichem (Lioflichem MIC test strip, Roseto
degli Abruzzi, Italy) [35-37].

The results were interpreted according to the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) guidelines. Multidrug-resistance (MDR), extensive drug
resistance (XDR), and pandrug resistance (PDR) were defined as previously proposed [38].
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2.3. Detection of Colistin Resistance Genes

Multidrug-resistant A. baumannii isolates were screened for the presence of colistin
resistance genes (mcr-1 to mcr-9) using polymerase chain reaction (PCR) assays. The
protocols performed were described by Rebelo et al. [39], while for mcr-6 to mcr-9, detection
was performed as described by Borowiak et al. [40]. For the detection of mcr genes, we
employed well-characterized control strains: mcr-1 (E. coli 2012-60-1176-27), mcr-2 (E. coli
KP27), mcr-3 (E. coli 2013-SQ352), mcr-4 (E. coli DH5«), and mcr-5 (Salmonella 13-SA01718).
The primers used for PCR are listed in Table 1.

Table 1. Primers used in the present study.

Target Gene Primer Sequence (5" — 3) Amplicon Size (bp) References
FW AGTCCGTTTGTTCTTGTGGC
mer-1 320 [39]
RV AGATCCTTGGTCTCGGCTTG
FW AAGTGTGTTGGTCGCAGTT-3'
mcr-2 715 [39]
RV TCTAGCCCGACAAGCATACC-3'
FW AAATAAAAATTGTTCCGCTTATG
mcr-3 929 [39]
RV AATGGAGATCCCCGTTTTT
FW TCACTTTCATCACTGCGTTG
mcr-4 1116 [39]
RV TTGGTCCATGACTACCAATG
FW ATGCGGTTGTCTGCATTTATC
mcr-5 1644 [39]
RV TCATTGTGGTTGTCCTTTTCTG
FW AGCTATGTCAATCCCGTGAT
mcr-6 252 [40]
RV ATTGGCTAGGTTGTCAATC
FW GCCCTTCTTTTCGTTGTT
mer-7 551 [40]
RV GGTTGGTCTCTTTCTCGT
FW TCAACAATTCTACAAAGCGTG
mcr-8 856 [40]
RV AATGCTGCGCGAATGAAG
FW TTCCCTTTGTTCTGGTTG
mcr-9 1011 [40]
RV GCAGGTAATAAGTCGGTC
FW TCAGACCGGAGAAAAACTTAACG
csuE 320 [41]
RV GCCGGAAGCCGTATGTAGAA
FW AATGCACCGGTACTTGATCC
bap 715 [41]
RV TATTGCCTGCAGGGTCAGTT
FW ATGAAAAAGACAGCTATCGCGATTGCA
ompA 929 [41]
RV CACCAAAAGCACCAGCGCCCAGTTG
FW ACCACTTGCACCGTTGGTAT
bauA 1644 [41]
RV GCAAGTTGCAACATCGAGCA
FW CTCTTGCATGGCAACACCAC
basD 252 [42]
RV CCAACGAGACCGCTTATGGT
FW ATTAGCCATGACCGGTGCTC
omp33-36 551 [42]
RV CCACCCCAAACATGGTCGTA
FW TGGATGAGTTAGCTGC
pglC 856 [42]
RV TTTTACAAATAGTTAAGC
FW CCGTCAATTACGCCAAGCTG
pld 1011 [42]

RV CTGACGCTACCTGACGGTTT
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2.4. Detection of Virulence Genes

PCR was employed to screen the presence of eight genes implicated in virulence,
namely, bap, ompA, csuE, bauA, basD, omp33-36, pld, and pgIC. Detection of bap, ompA, csuE,
and bauA genes was performed according to the protocols described by Sharma et al. [41],
while amplification of basD, omp33-36, pld, and pgIC genes followed the procedures outlined
by Alanazi et al. [42] (Table 1).

2.5. Assessment of Biofilm-Formation Ability

The ability of MDRAB strains to generate biofilm was evaluated using the crystal
staining technique described by O’Toole [43] and using 96-well microtiter plates. MDRAB
strains were grown o/n (overnight) in LB (Luria—Bertani) medium with a shaking speed of
200 rpm at 37 °C. The OD600 was measured to determine the density of the bacterial cells
in each culture. Briefly, each well received 180 pL of soybean tryptic broth (TSB) (Merck
KGaA, Darmstadt, Germany; Cat. No. T8907), with the addition of 2% glucose (w/v) and
20 pL of the bacterial liquid culture taken directly from the overnight cultures. The plates
were then kept at 37 °C for 72 h, washed three times with water for injection (WFI),
and dried at 37 °C for about half an hour. Afterwards, 200 (L of crystalline violet was
applied to each well, and after washing, 200 uL of 95% ethanol was added. The ability
for biofilm formation was assessed by measuring the optical density at 595 nm (OD595)
using a multispectral reader (Thermo Labsystems MS352). TSB (Merck KGaA, Darmstadt,
Germany; Cat. No. T8907) enriched with 2% (w/v) glucose was used as a negative control.
The cut-off value for the optical density (ODc) was defined as three standard deviations
above the mean OD of the negative control. Depending on the resulting OD values,
microbial strains were classified as no (N) biofilm formers (OD < ODc), weak (W) biofilm
formers (ODc < OD < 2 x ODc), moderate (M) biofilm formers (2 x ODc < OD < 4 x ODC),
or strong (S) biofilm formers (4 x ODc < OD), according to the criteria defined by Borges
et al. [44]. Two S. aureus isolates, previously classified as moderate and strong biofilm
formers [45], were also used to verify the test. All tests were performed three times, and
the results of the microtiter plate tests were averaged.

2.6. Detection of Hemolytic Activity

The hemolytic activity of the isolated strains was evaluated following the protocol of
Boone et al. [26] with minor modifications. Initially, the strains were cultured on Columbia
Agar plates supplemented with 5% sheep blood (Col+5+SB PLUS, bioMérieux) and incu-
bated for 24 h at 37 °C. Subsequently, 2-3 isolated colonies were subcultured in 5 mL of
Luria—Bertani (LB) broth (Merck KGaA, Darmstadt, Germany; Cat. No. L3522) and incu-
bated overnight at 37 °C. On the following day, the bacterial suspension was adjusted to a
0.5 McFarland standard, and 3 pL of this suspension was inoculated onto fresh Columbia
Agar plates supplemented with 5% sheep blood. The plates were incubated for 24 h at
37 °C and then examined for the presence of 3-hemolysis around the colonies [26].

2.7. Detection of Twitching and Swarming Motility

Twitching motility was assessed using LB agar plates containing 1% agar. A fresh
colony from each isolate was inoculated vertically into the agar with a sterile toothpick,
reaching the bottom of the plate. The plates were incubated at 37 °C for 48 h. After
incubation, the agar was carefully removed, and the bottom of the plate was stained with
1% crystal violet. Bacterial spread was observed macroscopically, and motility was assessed
by measuring bacterial spreading in millimeters (mm). Swarming motility was evaluated
on LB agar plates with 0.4% agar. Each plate was inoculated on the surface with 0.2 L
of overnight liquid culture and incubated closed at 37 °C for 48 h. The diameter of the
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spreading zone was recorded in millimeters, and as a quantitative measure, motility was
assessed by measuring bacterial spreading in millimeters (mm). Twitching motility was
categorized based on the diameter of the spreading zone as follows: non-motile (—) isolates:
<5 mm; moderately (+) motile: 5-20 mm; and highly (++) motile: >20 mm. Swarming
motility was considered positive (+) when the spreading exceeded 10 mm from the point of
inoculation [45,46].

2.8. Pulsed-Field Gel Electrophoresis (PFGE)

PFGE, using the restriction enzyme Apal, was performed for the MDRAB isolates
according to a protocol suggested by Seifert et al. [47].

Salmonella enterica serotype Branderup strain H9812, digested with 40 units of Xbal
(New England Biolabs, Beverly, MA, USA), was used as a size standard. Electrophoresis
conditions, using the CHEF-DR III system (Bio-Rad Laboratories Inc., Hercules, CA, USA),
were 14 °C for 19 h, with pulse times ranging from 5 to 20 s at an angle of 120°, and the volt-
age was 6 V cm 1. Gels were stained with ethidium bromide (1 pg/mL) and photographed.
A database containing all Apal PFGE patterns was created using the Bionumerics software
(ver.6.6 Applied Maths, Sint-Martens-Latem, Belgium). A dendrogram was constructed
using Dice’s similarity coefficient and the unweighted pair group method with arithmetic
mean (UPGMA), with 1.5% of tolerance and optimization. Clusters were defined using
a genetic similarity threshold of 85%, with the additional requirement that each cluster
comprised at least three isolates.

3. Results
3.1. Isolate Collection

A total of 40 MDRAB isolates were obtained, each from a distinct hospitalized patient.
Of these, 27 isolates were collected from Hippokration Hospital (designated as A) and 13
from Papanikolaou Hospital (designated as B), both of which are tertiary care hospitals in
Thessaloniki. Most isolates were recovered from patients in the Intensive Care Unit (ICU,
n = 19), followed by the Internal Medicine Unit (IMU, n = 7), the Respiratory Failure Unit
(RDU, n = 3), and the Plastic Surgery Unit (PSU, n = 3), while the remaining 8 originated
from various other hospital departments. The patient population consisted of 23 males and
17 females.

3.2. Antimicrobial Susceptibility Testing

Overall, 38 out of the 40 A. baumannii isolates (95%) were classified as PDR, while
2 isolates were classified as XDR. The susceptibility results to colistin, as determined by both
the reference microdilution method and the e-test method, showed that all isolates exhibited
resistance to colistin, with a minimum inhibitory concentration (MIC) of >4 pg/mL. These
two methods were fully consistent with the resistance profile to colistin as determined by the
BioMérieux VITEK 2 system of the two hospitals (Table S1).

3.3. Molecular Detection of Colistin Resistance and Virulence-Associated Genes

Analyses of the samples using multiplex PCR did not reveal the presence of any mcr-1,
mcr-2, mcr-3, mcr-4, mcr-5, mer-6, mcr-7, mcr-8, or mcr-9 genes in any of the examined A.
baumannii strains (Figure 1).

Regarding the virulence-associated genes, the most frequently detected were basD, which
was present in all 40 isolates (100%), and pld, found in 38 isolates (95%). The csuE gene was
identified in 35 isolates (87.5%), while bap was present in 31 (77.5%). In contrast, the omp33-36
gene was detected in only eight isolates (20%), and bauA was detected in seven isolates (17.5%).
None of the isolates tested positive for ompA or pgIC (Figure 1, Table S1).



Pathogens 2025, 14, 730 7 of 14
Dice (Opt1 50%) (T 1.5%-1.5%) (H20.0% S500%) DOK-1000%]
Acinetobacter baumannii Acinetobacter baumannii
e e s . e ° H Sample  Date Hospital Unit Sample type sex Virulence genes Twitching Swarming Biofilm  Hemolysis Pulsotype  Cluster
29 05/2022 A Internal medicine Blood F Bap csuE basD pld (+) +) s (+) 0001 A
35 05/2022 A icu CV Catheter M Bap csuE basD pld *) +) M *) 0002 A
31 05/2022 A Icu Blood M Bap csuE basD pld (+) +) M (+) 0003 A
28 05/2022 A icu Urine F Bap csuE basD pld *) +) s *) 0004
27 05/2022 B Plastic surgery Blood F Bap csuE basD pld (+) +) s (+) 0005
o7 032022 B Plastic surgery Urine F Bap csuE basD pld *) +) s *) 0006 B
21 05/2022 B Plastic surgery Bronchial Secretion F Bap csuE basD pld ) (+) s (+) 0007 B
22 0312022 B icu Bronchial Secretion M Bap basD pld © *) s *) 0008 B
02 01/2022 A Icu Blood M Bap csuE basD pld ) +) s (+) 0009 B
13 05/2022 A Internal medicine Urine M Bap csuE basD pld (+) +) M (+) 0010 B
14 05/2022 A Icu Blood M Bap csuE basD pld (+) +) s (+) 0011 B
20 05/2022 B Neurology BAL F Bap csuE basD pld ) +) s (+) 0012 B
1 05/2022 A Icu Blood M Bap csuE basD pld (+) +) s (+) 0013
23 05/2022 B RCU Stool F Bap csuE basD pld (+) +) s (+) 0014
15 05/2022 A Icu Urine M csuE basD pld (+) +) s (+) 0015 c
16 05/2022 A Internal medicine Bronchial Secretion F csuE basD pld (+) +) s (+) 0016 c
06 04/2022 B RCU Bronchial Secretion F csuE basD pld (+) +) s (+) 0017 c
24 05/2022 B Icu Urine M Bap csuE basD pld (+) +) s (+) 0017 c
33 05/2022 A Internal medicine Blood M csuE basD pld ) +) s (+) 0018 c
10 05/2022 A Obstetrics Blood F csuE basD pld (+) (+) s (+) 0019 [}
03 01/2022 B RCU Blood M Bap csuE basD pld (+) +) s (+) 0020 c
18 05/2022 A Icu Bronchial Secretion F csuE basD pld (+) +) s (+) 0021 c
19 05/2022 A Icu Bronchial Secretion M csuE basD pld (+) +) s (+) 0022 c
01 01/2022 A Icu Blood M Bap csuE basD pld (+) (+) s (+) 0023 D
25 05/2022 B Plastic surgery Bronchial Secretion F Bap csuE basD pld (+) (+) M (+) 0024 D
08 0312022 B Cardiology Bronchial Secretion M CSUE basD pld *) *) s *) 0025 D
38 05/2022 A icu Bronchial Secretion ™ Bap bauA basD omp33-36 pld *) *) w *) 0026
39 0512022 A icu Bronchial Secretion F Bap csuE basD pld *) *) w *) 0027
34 05/2022 A icu Blood ™M csuE basD pld ) *+) M (+) 0028
B 05 02/2022 B Icu Burn Wood M Bap csuE basD omp33-36 pld (++) +) M (+) 0029
09 04/2022 A icu Blood F Bap bauA basD omp33-36 (+4) *) s +) 0030
30 05/2022 A Icu Skin lesion M Bap csuE bauA basD omp33-36 pld  (++) (+) w (+) 0031
L2 0512022 A Internal medicine CV Catheter F Bap CSUE bauA basD omp33-36 pld  (++) *) s +) 0032 E
26 05/2022 B Icu Blood F Bap csuE bauA basD omp33-36 pld  (++) +) M (+) 0033 E
37 06/2022 A Internal medicine Blood M Bap CSUE bauA basD omp33-36 pld  (++) *) M *) 0034 E
40 06/2022 A Nephrology Skin lesion M Bap csuE basD omp33-36 pld (++) (+) s (+) 0034 E
04 01/2022 A HDU Blood M Bap csuE basD pld (++) *) S (+) 0035
17 04/2022 A Internal medicine Bronchial Secretion F Bap basD (++) o) s (+) 0036
32 05/2022 A Internal medicine Blood M Bap basD pld (++) ) M (+) 0037
36 0512022 A icu Bronchial Secretion M Bap csuE bauA basD pld *) *) s *) 0038

Figure 1. PFGE dendrogram of 40 multidrug-resistant A. baumannii isolates recovered from two
tertiary care hospitals in Thessaloniki, Greece (2022).

A limitation of the present study was the absence of positive control strains in the PCR
assays targeting mcr 6-9, as well as virulence genes. Despite this limitation, all reactions
were performed using rigorously optimized conditions based on established protocols from
the literature.

3.4. Phenotypic Characterization of Biofilm Formation, Hemolysis, and Motility

Among the total isolates analyzed (n = 40), 67.5% (n = 27) exhibited a strong biofilm-
forming ability (strongly positive, S), 22.5% (n = 9) were classified as positive (moderate
biofilm formers, M), and 10% (n = 4) were categorized as weakly positive (weak biofilm
formers, W) (Figure 1).

A clear hemolysis zone surrounding the bacterial colonies was observed in all cases,
indicating positive (+) x-hemolytic activity in 100% of the isolates.

The twitching motility assay revealed that 10 isolates (25%) were categorized as non-
motile (—), 22 (55%) as moderately (+) motile, and 8 (20%) as highly (++) motile in the
twitching motility assay. The twitching diameters ranged from 2 mm to 50 mm, with a
mean value of 10.55 mm, indicating considerable phenotypic variability.

In contrast, all isolates exhibited positive (+) swarming motility, with spreading zones
ranging from 11 mm to 30 mm and a mean diameter of 19.7 mm. Most of the isolates
derived from skin lesions, catheter tips, and urine cultures displayed high twitching activity
(>30 mm), whereas those isolated from blood and respiratory specimens demonstrated
heterogeneous motility profiles displaying either non-motile or moderately motile behavior.
The highest twitching value observed (50 mm) was found in an isolate from a skin lesion
(Figure 1, Table S1).

3.5. Genetic Diversity of Isolates

Among the 40 A. baumannii isolates analyzed by PFGE, 38 distinct pulsotypes (desig-
nated 0001-0038) were identified. At an 85% similarity cut-off, five major clusters (A-E)
were defined. Cluster A included three isolates, cluster B included seven isolates, cluster C
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included nine isolates, cluster D included three isolates, and cluster E included four isolates.
Cluster A was exclusively found in Hospital A, whereas isolates belonging to clusters B, C,
D, and E were distributed across both hospitals (Figure 1).

4. Discussion

In this study, we analyzed 40 MDRAB isolates from two tertiary care hospitals in
Greece. The majority exhibited a PDR phenotype and universal resistance to colistin. No
mcr genes were detected, while key virulence-associated genes, including basD, pld, csuE,
and bap, were prevalent. Most isolates demonstrated strong biofilm formation, «-hemolytic
activity, and swarming motility, with considerable variability in twitching motility. PFGE
analysis revealed high genetic diversity, with 38 distinct pulsotypes, while five major
clusters were identified at an 85% similarity threshold.

The mounting threat of colistin-resistant A. baumannii is increasingly evident in re-
cent regional and international reports, which collectively emphasize the urgent need for
coordinated surveillance and intervention. While Ozoaduche et al. [48] did not directly
assess colistin resistance, their identification of high-risk clones such as ST2 in both clinical
and environmental settings in the Western Balkans and Hungary suggests the potential for
the silent dissemination of resistant strains beyond hospital walls, particularly in regions
with environmental antibiotic pressure from veterinary use. This concern is reinforced by
Bouali et al. [49], who documented clinical isolates in Algeria harboring both carbapen-
emase genes and phenotypic resistance to colistin, illustrating a troubling convergence
of resistance determinants within hospital-associated strains. Similarly, Salem et al. [50]
demonstrated the widespread mobilization of resistance elements via transposons and plas-
mids in Egyptian hospitals, confirming the genomic plasticity that enables rapid acquisition
and dissemination of resistance traits, including those to colistin. The outbreak described
by Hidalgo et al. [51] in a Spanish burn unit—where ST1 isolates co-producing NDM-1 and
OXA-23 also exhibited resistance to colistin and cefiderocol—further highlights the risk of
pan-resistant lineages emerging under intense antimicrobial pressure.

The results of the present study highlight the alarming extent of multidrug resistance in
clinical isolates of A. baumannii, with 95% of strains showing resistance to all antimicrobials
tested. This observation is consistent with previous reports from Greece and other countries,
including carbapenems and colistin [52-54]. Of particular interest is the fact that in our
study, the 40 MDRAB strains from two tertiary hospitals in Thessaloniki did not present
any of the mcr resistance genes (mcr-1 to mcr-9), which are usually associated with colistin
resistance in Gram-negative bacteria. To date, mcr-mediated colistin resistance has not been
reported in A. baumannii in Greece, rendering this resistance mechanism currently absent or
extremely rare. This finding aligns with recent clinical studies reporting phenotypic colistin
resistance in A. baumannii despite the absence of mcr genes, suggesting that the underlying
mechanisms may involve chromosomal mutations in regulatory loci such as pmrAB or
IpxA, IpxC, and IpxD [55-57]. These alternative mechanisms are increasingly recognized as
major contributors to colistin resistance in clinical environments. Notably, studies including
Greek isolates have documented mutations in the pmrAB two-component regulatory system
and Ipx lipid A biosynthesis genes associated with colistin resistance. Palmieri et al. [58]
identified the pmrB A226V mutation in all colistin-resistant isolates examined between 2015
and 2017, alongside additional pmrA/pmrB substitutions linked to elevated MICs and lipid
A modifications. Similarly, Oikonomou et al. [59] reported mutations in both the pmrCAB
operon and IpxACD genes in resistant clinical isolates from central Greece, implicating
these changes in reduced colistin susceptibility. Experiments aimed at further elucidating
the underlying resistance mechanisms—specifically whole-gene sequencing and analysis of
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these chromosomal loci—are currently underway by our research team for the A. baumanni
strains studied in the present work.

The genetic analysis of virulence factors showed that the bap gene, associated with
mature biofilm stabilization, was present in the majority of the isolates, supporting its
established role in persistence and virulence [60,61]. Most of the isolates classified as strong
biofilm formers carried the bap gene, suggesting a correlation between bap presence and
high biofilm ability. Furthermore, the presence of other virulence genes, such as csuE,
basD, and pld, underlines the multidimensional mechanisms by which A. baumannii can
evade host defenses and survive in the hospital environment. In particular, the presence
of the pld gene was significantly associated with strong biofilm production. Although
pld is primarily involved in phospholipid degradation and immune evasion [24,25], its
correlation with biofilm-forming abilities suggests a complementary role in virulence
expression, possibly enhancing colonization and persistence in clinical settings. The high
prevalence of basD, pld, and bap in A. baumannii isolates suggests a multifactorial virulence
strategy, where these genes may act synergistically to enhance colonization, persistence,
and pathogenicity. basD, a key gene in acinetobactin biosynthesis, facilitates iron acquisition
in iron-limited environments such as the human host, supporting bacterial survival and
metabolic activity. pld encodes phospholipase D, which contributes to epithelial damage
and may aid in host tissue invasion, potentially complementing bap-mediated biofilm
formation, which enhances surface adherence, immune evasion, and antibiotic tolerance.
The co-occurrence of these genes may therefore reflect a coordinated virulence strategy
where nutrient acquisition (basD), tissue invasion (pld), and persistence (bap) reinforce one
another, particularly in chronic or device-associated infections. This functional interplay
underscores the importance of targeting multiple virulence determinants in anti-virulence
therapy development. The absence of the ompA and pgIC genes in our strains, however,
suggests that these virulence factors may not be critical for strains circulating in this
geographic region. Similar absence patterns have been observed in other regional studies,
possibly reflecting clonal or environmental adaptation [62].

In terms of pathogenicity, our study revealed that a significant proportion of MDRAB
strains displayed the ability to form biofilms, which is a key factor in their persistence and
resistance to antimicrobial therapies. Most of the isolates were classified as strongly positive
for biofilm formation, which is consistent with previous studies that have highlighted the
role of biofilm in A. baumannii pathogenicity. This observation agrees with recent findings
that link strong biofilm formation with increased resistance to antimicrobials and host
immune evasion [42].

In our study, all isolates demonstrated hemolytic activity, suggesting that this trait
may play a consistent role in A. baumannii pathogenicity. The ability to induce hemolysis
could facilitate tissue damage and aid in evasion of the host immune response, potentially
enhancing the organism’s capacity to establish and sustain infections. This finding agrees
with recent studies that describe o-hemolysis as a conserved virulence trait in MDRAB,
contributing to host cell lysis and immune modulation [63].

Swarming motility was detected in all strains, indicating that this form of motility
may represent a stable phenotype in clinical MDRAB strains. In contrast, twitching motility
showed significant phenotypic heterogeneity. High twitching values were more frequently
associated with strains derived from skin lesions or catheters, which may be related to
the adaptation of the microorganism to surface environments. These findings suggest the
possible involvement of motility in both colonization and biofilm development. These
observations are consistent with the current literature, which supports the role of motility
in facilitating both colonization and biofilm development in A. baumannii [28,29].
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The PFGE analysis of 40 multidrug-resistant A. baumannii isolates revealed striking
genetic diversity, identifying 38 distinct pulsotypes. Despite this diversity, five primary
clusters emerged. Cluster A, consisting of three isolates, was confined to Hospital A, indi-
cating a possible localized clonal expansion. In contrast, clusters B through E (comprising
7,9, 3, and 4 isolates, respectively) were distributed across both hospitals, pointing toward
inter-facility circulation—a pattern consistent with findings from other surveillance studies.
Overall, the high genetic heterogeneity observed suggests that the dissemination of A. bau-
mannii in our setting is more likely driven by sporadic introductions from environmental
reservoirs, community sources, or patients’ endogenous flora, rather than sustained clonal
spread within a single institution.

Similar PFGE-based investigations across Greek healthcare settings have reported
both transient clonal expansions and high strain turnover. For instance, a 2009 study at
Papageorgiou Hospital in Thessaloniki demonstrated the rise and fall of dominant clones
over time, suggesting dynamic replacement rather than long-term endemic persistence [64].
In an earlier multicenter study (1998-1999) involving nine Athens ICUs, 68% of isolates clus-
tered into two major clonal groups, indicating widespread inter-hospital dissemination [65].
Conversely, a decade-long molecular epidemiology study across eight Greek hospitals
(2000-2009) reported an increase in clonal diversity and emergence of novel sequence
types, reflecting ongoing diversification [66]. Our observation of numerous unique strains
interspersed with small clusters aligns with this pattern, suggesting a mixed epidemiologi-
cal scenario. The presence of clusters across both hospitals may reflect shared reservoirs,
patient transfers, or environmental persistence, while the predominance of unique pulso-
types supports repeated independent introductions. This contrasts with classical outbreak
dynamics, where large, homogeneous PFGE clusters suggest extensive cross-transmission,
such as in documented A. baumannii epidemics in surgical ICUs [67]. Collectively, our
findings emphasize the complex epidemiology of A. baumannii in the hospital environment
and support the need for surveillance strategies tailored not only to outbreak containment
but also to managing ongoing, multifocal introductions.

5. Conclusions

This study underscores the growing threat of multidrug-resistant A. baumannii in
clinical environments. Its resistance to multiple antimicrobial classes—including, in some
instances, colistin combined with its capacity for biofilm formation and a wide array of
virulence factors—reinforces its role as a significant agent of hospital-acquired infections.
Although mcr genes were not detected, the presence of alternative resistance mechanisms
requires further investigation. The pronounced genetic heterogeneity observed via PFGE
suggests that direct patient-to-patient transmission is limited, with sporadic introductions
from environmental reservoirs likely playing a more prominent role. To mitigate this
challenge, continuous molecular surveillance and strengthened infection control strategies
are crucial. In particular, targeted measures such as biofilm-disrupting disinfectants, mon-
itoring for motility and biofilm-associated strains, and customized cleaning protocols in
high-risk areas may help reduce transmission and infection rates.
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