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Abstract 
The in vitro models have great potential in skin-related research as well as in testing for active ingredients in 
cosmetics, dermocosmetics and pharmaceuticals. Human skin behavior can be simulated in vitro using a variety of 
methods ranging from cell monolayer models to complicated organotypic and bioengineered three-dimensional 
models. Moreover, skin in vitro models offer an excellent alternative to animal testing in cosmetics and some of 
them are validated to be used as preclinical as-says. However, the in vitro simulation of the whole skin together with 
its appendages is still in its early stages. In this article we discuss a short evolution of skin models with its 
challenges and its future. 
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1. INTRODUCTION 
 

The development of in vitro skin models that fully 
mimic the epidermis, dermis, and subcutis as well 
as its appendages, such as sweat glands, hair 
follicles, and the arrector pili muscle, is a major 
challenge in the field of in vitro skin models. We 
are still far from simulating the entire complexity 
of human skin, both structurally and cellularly 
[1,2]. However, the need for novel and efficient in 
vitro three-dimensional (3D) or even multi-
dimensional human skin tissue equivalents has 
grown, not only for clinical applications like skin 
grafts, but also for research purposes, such as 
exploring the fundamental causes of skin 
diseases or evaluating the safety and efficacy of 
active agents in cosmetics, dermocosmetics and 
pharmaceuticals. 
 

2. DISCUSSION 
 

There are different in vitro skin models ranging  
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from simple cell-monolayer models to more com-
plex such as tissue engineering approaches. 
Two-dimensional (2D) cultures of primary human 
keratinocytes and fibroblasts are used quite ex-
tensively as a skin model approach [3]. These 
cultures are useful for drug or cosmetics screen-
ing, cytotoxicity assays, and studying molecular 
mechanisms in homeostasis, skin aging, or dis-
eases like cancer [2,4,5]. However, they do not 
accurately replicate cell-cell or cell-matrix com-
munication and structural organization of the skin.  
It has been reported that extracellular matrix 
(ECM) components could be added to 2D cell 
models enabling a more representational ap-
proach close to in vivo [2,6,7]. 

Organoids, a simplified system in which cells 
grow in a 3D well chemically defined microenvi-
ronment made up of extracellular matrix (ECM) and 
media, are considered to be the evolution of more 
complex in vitro skin systems. The clusters of 
cells in these systems differentiate into distinct 
cell types that mimic the structure and function of 
the organ [8,9]. The traditional and most basic in 
vitro skin models are the 3D human skin equiva-
lents (HSE) which are well established and are 
accessible on the market for testing of products 
[2]. Currently, a wide range of commercial in vitro 
HSE are available providing alternatives for skin 
sensitivity testing, toxicity testing, and drug 
screening such as ZK1350 [10], EpiDerm™ [11], 
T-skin™[12], MelanoDermTM, [13], EpiSkin™ 
[14], SkinEthic™ RHPE 45, and The Phenion™ 
FT Skin model [15]. The development of com-
mercial in vitro assays for regulatory toxicology 
has been prompted the legislative shift toward 
non-animal testing (EU Regulation 1223/2009 
and U.S. Federal Food, Drug, and Cosmetic Act, 
2022). The OECD has adopted several validated 
epithelial only in vitro methods for skin corrosion 
and irritation (Test Guidelines 431 and 439, re-
spectively) [16]. These in vitro 2D and 3D skin 
models, while helpful for certain cosmetic tests, 
are not representative of skin physiopathology 
and do not have a circulatory flow that replicates 
blood vessels, which is necessary for the distribu-
tion of nutrients and other molecules. In addition, 
as the human body is subjected to various 
stressors and environmental factors, normal skin 
growth takes place concomitantly. Thus, a variety 
of dynamic and microfluidic bioengineered devic-
es, such as skin bioreactors and skin on chips, 
are being employed recently to promote and facil-
itate important physiological events for the for-
mation of in vitro skin tissues. Skin bioreactors 
are complex bioengineered devices intended to 
simulate in-vivo like biophysiological stimuli at the 
bench scale to stimulate, mature, monitor and 

prolong healthy skin culture duration [17,18]. 
Moreover, skin on a chip are tiny devices that 
allow the application of various stimuli such as 
microflows, mechanical forces or chemical gradi-
ents to present more realistic models with a more 
accurate response to treatments and drugs [19].  
In addition to bioreactors and state-of-the-art 
technology, 3D skin bioprinters allow for the re-
construction of human skin, including details such 
as sweat glands and hair follicles [20,21]. Re-
search on skin grafting and regenerative medi-
cine has previously employed these products in 
high-throughput research [2]. Presently available 
in vitro skin models attempt to mimic essential 
skin properties as flexibility, immunological re-
sponse, and barrier function. However, biological 
and technical issues prevent the development of 
a more realistic model [22]. It worth to be noticed 
that the thickness of HSE models is attributed to 
the primary cells which exhibit donor-to-donor 
variance indicated by variations in individual re-
sponses. However, these multicellular models in 
order to be realistic, co-cultures systems should 
be developed raising issues on histocompatibility 
because of different cell types and donors. Addi-
tionally, skin functions such as body hydration, 
thermoregulation, and feeling (pain, itching), de-
pend on the skin's appendages, including hair 
follicles, sebaceous, and sweat glands, as well as 
the brain sector. According to the current litera-
ture on this matter, the in vitro simulation of the 
melanogenesis process in skin or hair as well as 
the hair follicle development are two processes 
quite challenging with a variety of applications in 
medicine, dermocosmetics and pharmaceutics. 
Despite all the current advancements discussed 
above, which allow for the anatomical and phys-
iological replication of both healthy or unhealthy 
in vitro HSE, there is no HSE available with wide-
spread application.  
 

3. CONCLUSION 
 
In academia, many efforts are made in develop-
ing in vitro HSE to increase experimental 
throughput and tissue complexity, whilst improv-
ing biological and methodological aspects to suc-
cessfully mimic human skin as well as skin dis-
eases. 
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