Clinical Research

Development and Testing of a Novel Anaesthesia Induction/Ventilation Protocol for Patients With Cardiogenic Shock Complicating Acute Myocardial Infarction

Athanasios Chalkias, PhD,a,b Fotios Pavlopoulos, MD,c Effie Papageorgiou, PhD,d Christos Tountas, MD,e Artemis Anania, RN,c Maria Panteli, RN,c Apostolos Beloukas, PhD,d,f and Theodoros Xanthos, PhDb,g

ABSTRACT

Background: Cardiogenic shock is a life-threatening condition and patients might require rapid sequence induction (RSI) and mechanical ventilation. In this study, we evaluated a new RSI/mechanical ventilation protocol in patients with acute myocardial infarction complicated by cardiogenic shock.

Methods: We included consecutive adult patients who were transferred to the emergency department. The RSI protocol included 5 phases: preoxygenation, pretreatment, induction/paralysis, intubation, and mechanical ventilation (PPIIM). A posteriori, we selected historical patients managed with standard RSI as a control group. The primary outcome was hemodynamic derangement or hypoxemia from enrollment until intensive care unit (ICU) admission.

Results: We studied 31 consecutive patients who were intubated using the PPIIM protocol and 22 historical controls. We found significant differences in systolic (85.32 ± 4.23 vs 71.72 ± 7.98 mm Hg; P < 0.0001), diastolic (58.84 ± 5.84 vs 39.05 ± 5.63 mm Hg; P < 0.0001), and mean arterial pressure (79.50 ± 7.28 vs 67.13 ± 8.06 mm Hg; P < 0.0001) between the two groups. The incidence of hypoxemia was significantly lower in the PPIIM group compared to the control group (35.4% vs 72.7%, P < 0.001).

Conclusion: The use of the PPIIM protocol is associated with a significant improvement in hemodynamic profile and a lower incidence of hypoxemia compared to standard RSI, indicating its potential benefit in the management of patients with cardiogenic shock.

For full text, visit https://doi.org/10.1016/j.cjca.2018.04.015

© 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
P < 0.0001), and mean arterial pressure (57.71 ± 4.90 vs 49.90 ± 5.66 mm Hg; P < 0.0001), as well as in partial pressure of oxygen (58.80 ± 19.82 vs 164.73 ± 43.07 mm Hg; P < 0.0001) between the PPIIM and control group at 5 minutes of automated ventilation. Also, statistically significant differences were observed in diastolic (59.74 ± 4.93 vs 47.86 ± 11.47 mm Hg; P < 0.0001) and mean arterial pressure (68.65 ± 4.10 vs 60.23 ± 11.67 mm Hg; P < 0.0001), as well as in partial pressure of oxygen (119.84 ± 50.57 vs 179.50 ± 42.17 mm Hg; P < 0.0001), and partial pressure of carbon dioxide (39.81 ± 10.60 vs 31.00 ± 9.30 mm Hg; P = 0.003) between the 2 groups at ICU admission. Compared with the control group, with PPIIM more patients survived to ICU admission (100% vs 77%) and hospital discharge (71% vs 31.8%), as well as at 90 days (51.6% vs 18.2%), and at 180 days (38.7% vs 13.6%).

Conclusions: The PPIIM protocol allows safe intubation of acute myocardial infarction patients with cardiogenic shock and improves hemodynamic and oxygenation parameters.

pressure, while the increased diastolic stiffness and left atrial pressure lead to pulmonary congestion, hypoxia, and worsening ischemia, which is further aggravated by hypotension and its associated inflammatory response. One of the initial goals in the management of these patients is to prevent the consequences of prolonged end-organ hypoperfusion and death. However, some of them might require invasive ventilation because of decreased level of consciousness, severe hypoxemia, etc. and rapid sequence induction (RSI) and mechanical ventilation (MV) might be required. Resuscitation efforts should be commenced without inactivating the compensatory mechanisms, causing further injury, and RSI has to be performed within a short time frame, after which the consequences of prolonged end-organ insult will be deleterious. However, blunted hypertensive responses during RSI might increase afterload and oxygen demand, further aggravating myocardial injury, cardiac output, and coronary perfusion pressure.

Until now, very few studies have addressed the ideal RSI/MV mode in these patients. In addition, although emerging evidence highlights the potential deleterious effect of hypoxemia, 19,20 the ideal oxygenation targets remain undefined. As a result, there is insufficient evidence to recommend specific ventilation modes or strategies in this population. In the absence of high-quality data, the American Heart Association suggests that MV modes and settings be adjusted to prevent hypoxemia and hyperoxia, to minimize patient discomfort and ventilator dysynchrony, and to optimize hemodynamics. 10 In this context, we created an RSI/MV protocol in our institution. Our experience has shown that optimization of oxygenation and RSI using small drug quantities might prevent deterioration and hemodynamic collapse in this fragile population. In this study, we assessed our protocol in a cohort of patients with AMI complicated by cardiogenic shock.

Methods

Study design and setting

This before-and-after cohort study included patients with AMI complicated by cardiogenic shock. The study design complies with the Declaration of Helsinki, 11,12 and ethical approval for this study was provided by the Ethical Committee of the Hospital (number 2856). The study was undertaken in a large tertiary hospital in Attica, Greece, covering an area of 50.4 km² with a population of 448,997 residents. In this hospital, patients are transferred to the emergency department (ED) by the National Emergency Medical Service.

Population

We performed a before-and-after cohort study including consecutive adult patients (18 years of age or older) with AMI complicated by cardiogenic shock who were intubated in the ED between September 2014 and September 2016. Cardiogenic shock was confirmed after documentation of AMI, shock, echocardiographic evidence of cardiac dysfunction (AMI-related left ventricular failure [large infarction, small/moderate infarction with preexisting dysfunction and/or extensive ischemia] and/or right ventricular failure [large infarction, small/moderate infarction with preexisting dysfunction and/or extensive ischemia] and/or global ischemia and/or mechanical complications), and exclusion of alternative causes of hypotension. Shock was defined as severe hypotension (systolic arterial pressure < 90 mm Hg or mean arterial pressure [MAP] 30 mm Hg lower than baseline for more than 30 minutes despite adequate fluid resuscitation) within 6 hours of first AMI symptoms, end-organ hypoperfusion (defined as cool extremities, oliguria with urine output of < 30 mL/h, altered mental status, serum lactate > 2.0 mmol/L, and clinical signs of pulmonary congestion), low mixed venous oxygen saturation, low
The patients were required to have all of the criteria to be eligible for the study.

Patients with decreased level of consciousness, severe dyspnea with use of accessory muscles and paradoxical abdominal motion, respiratory rate > 35 breaths per minute, life-threatening hypoxemia (arterial partial pressure of oxygen \[PaO_2\] < 40 mm Hg or \[\text{PaO}_2/\text{fraction of inspired oxygen} [\text{FiO}_2] < 200 \text{ mm Hg}\]), severe acidosis (pH < 7.25), and/or hypercapnia (arterial partial pressure of carbon dioxide \[\text{PaCO}_2\] > 60 mm Hg) were intubated using our RSI/MV protocol. All patients received the standard of care recommended for patients with AMI and cardiogenic shock, whereas the decision to intubate a patient was taken considering the clinical indication (unconsciousness, increased work of breathing, airway protection, hemodynamic or electric instability) and also the risk-benefit ratio. Patients with incomplete data, prehospital intubation attempt, obstructed airway, mechanical or other cause of shock, prehospital vasopressor/inotrope use, dilated cardiomyopathy, allergy to any of the RSI drugs, air transport, and out-of-hospital cardiac arrest were excluded from the study.

Twenty-two historical patients with AMI complicated by cardiogenic shock were a posteriori selected as comparative controls. Control patients were included if they were admitted to the ED within 6 hours of first AMI symptoms and had the same (as much as possible) demographic characteristics, organ function/failure, comorbidities, and available data (including RSI and survival rates) to the study group. All of them were intubated in the ED between January 2008 and January 2012 and were managed by experienced anaesthesiologists using an RSI with standard doses of midazolam, propofol or etomidate, and succinylcholine. Although we were not able to collect all of the data or end points, we could extract several hemodynamics and metabolic parameters and were able to compare mortality rates. The methods section only refers to the study group, because we are unable to describe such phases in the historical group.

Rapid sequence intubation and MV protocol

An RSI/MV protocol was developed and approved by a committee including experts in resuscitation. The protocol included 5 phases: preoxygenation, pretreatment, induction/paralysis, intubation, and MV (PPIIM).

The oxygenation technique included the placement of a nasal cannula to facilitate passive (apneic) oxygenation (intubation phase; Fig. 1). Laryngoscopy and intubation proceeded in a standard fashion. We defined each insertion of the laryngoscope blade into a patient’s mouth as an intubation attempt, regardless of the outcome of the attempt.

The position of the endotracheal tube was confirmed by auscultation and capnography/capnometry. End-tidal carbon dioxide was measured using a mainstream method (N-3CM option) using Mainstream CO2 (Datex Ohmeda S/5 Anaesthesia Monitor; Datex-Ohmeda Inc, Madison, WI). The patients were then connected to an automated ventilator (Dräger Oxylog 2000 portable ventilator; Dräger Medical, Luebeck, Germany). Ventilator settings were \[\text{FiO}_2\] 60%, tidal volume 6 mL/kg, inspiratory:expiratory ratio (I:E) = 1:2, plateau pressures < 30 cm H2O, and no positive end-expiratory pressure. We do not include positive end-expiratory pressure in the initial settings because the type and cause of shock might not be obvious from the medical history, physical examination, or clinical investigations, and several shock types might coexist. \(^{13}\) Respiratory rate was adjusted according to arterial blood gas analysis to maintain an end-tidal carbon dioxide of 30-35 mm Hg or 3-5 mm Hg lower than the initial \[\text{PaCO}_2\] in patients with known asthma/chronic obstructive pulmonary disease, to prevent hypocapnia and abrupt hemodynamic changes. The remaining ventilator settings were not changed until intensive care unit (ICU) admission. Midazolam 0.35 mg/kg/h was initiated and an I.V. bolus dose of cisatracurium 0.15 mg/kg was administered when succinylcholine was metabolized. Low dose noradrenaline infusion (1 \(\mu\)g/kg/min) was initiated when necessary and adjusted on the basis of clinical data, history, and baseline hemodynamics to maintain a MAP of 60-70 mm Hg. All patients were transferred to the ICU.

Data collection

Data analysis was on the basis of predefined data points on a prospective data collection form. The authors for the study group were blinded to measurements until the end of the study and all data were analyzed. An independent Data and Safety Monitoring research staff monitored safety, ethical, and scientific aspects of the study, while an independent enrollment research staff was responsible for obtaining data collection from the emergency medical services field medical record, as well as for exclusion of all patients not meeting inclusion criteria for the study group.

The study was divided in 9 distinct time points: ED admission, before preoxygenation, at 2 minutes of preoxygenation, at 1 minute after induction of anaesthesia, before intubation, immediately after intubation, at 1 minute of MV, at 5 minutes of MV, and ICU admission. Hemodynamics were measured invasively from an indwelling catheter placed in the radial or femoral artery immediately after diagnosis of cardiogenic shock, whereas arterial blood gases were collected at each predefined time point and before respiratory rate adjustment. Arterial blood samples were analyzed immediately using an analysis machine (Radiometer ABL800 Flex Blood Gas Analyzer; Radiometer Medical A/S, Brønshøj, Denmark).

Study end points and ethical considerations

The primary outcome was hemodynamic derangement or hypoxemia from enrollment until ICU admission. Secondary outcomes were peri-intubation cardiac arrest, defined as...
Figure 1. The preoxygenation, pretreatment, induction/paralysis, intubation, and mechanical ventilation (PPIIM) protocol. After the onset of mechanical ventilation, adjust pressors on the basis of clinical data, history, and baseline hemodynamics. AP OX, apneic oxygenation; BVD, bag-valve device; ETCO$_2$, end-tidal carbon dioxide; I:E, inspiratory:expiratory ratio; IV, intravenous; NC, nasal cannula at 15 L/min; NRFM, nonrebreather face mask at 15 L/min; PaCO$_2$, arterial partial pressure of carbon dioxide; PEEP, positive end-expiratory pressure.
Table 1. Patient characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>PPIIM group</th>
<th>Historical control group</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (%)</td>
<td>31 (100)</td>
<td>22 (100)</td>
<td>NA</td>
</tr>
<tr>
<td>Male sex, n (%)</td>
<td>20 (64.5)</td>
<td>14 (63.6)</td>
<td>0.392</td>
</tr>
<tr>
<td>Mean age ± SD, years</td>
<td>66.55 ± 12.43</td>
<td>67.41 ± 12.60</td>
<td>0.806</td>
</tr>
<tr>
<td>Mean BMI ± SD</td>
<td>26.39 ± 4.14</td>
<td>26.68 ± 3.67</td>
<td>0.790</td>
</tr>
<tr>
<td>STEMI diagnosis, n (%)</td>
<td>22 (71)</td>
<td>15 (68.2)</td>
<td>0.324</td>
</tr>
<tr>
<td>Active smoker, n (%)</td>
<td>22 (71)</td>
<td>12 (54.5)</td>
<td>0.121</td>
</tr>
<tr>
<td>Diabetes mellitus, n (%)</td>
<td>10 (32.3)</td>
<td>7 (31.8)</td>
<td>0.148</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>19 (61.3)</td>
<td>14 (63.6)</td>
<td>0.487</td>
</tr>
<tr>
<td>Kidney disease, n (%)</td>
<td>10 (32.3)</td>
<td>8 (36.4)</td>
<td>0.815</td>
</tr>
<tr>
<td>Previous stroke/TIA, n (%)</td>
<td>10 (32.3)</td>
<td>4 (18.2)</td>
<td>0.180</td>
</tr>
<tr>
<td>History of angina, n (%)</td>
<td>17 (54.8)</td>
<td>15 (68.2)</td>
<td>0.860</td>
</tr>
<tr>
<td>Heart failure, n (%)</td>
<td>9 (29)</td>
<td>6 (27.3)</td>
<td>0.607</td>
</tr>
<tr>
<td>Previous myocardial infarction, n (%)</td>
<td>8 (25.8)</td>
<td>10 (45.5)</td>
<td>0.815</td>
</tr>
<tr>
<td>Previous PCI, n (%)</td>
<td>7 (22.6)</td>
<td>9 (40.9)</td>
<td>0.804</td>
</tr>
<tr>
<td>Previous CAGB, n (%)</td>
<td>8 (25.8)</td>
<td>6 (27.3)</td>
<td>0.791</td>
</tr>
<tr>
<td>Asthma/COPD, n (%)</td>
<td>14 (45.2)</td>
<td>6 (27.3)</td>
<td>0.115</td>
</tr>
<tr>
<td>Mean Hb ± SD, g/dL</td>
<td>10.00 ± 1.83</td>
<td>10.18 ± 1.71</td>
<td>0.715</td>
</tr>
<tr>
<td>Mean hsTnI ± SD, ng/L</td>
<td>2507.42 ± 2933.01</td>
<td>3798.86 ± 2882.04</td>
<td>0.118</td>
</tr>
<tr>
<td>Mean Killip score ± SD</td>
<td>2.74 ± 0.73</td>
<td>2.36 ± 0.49</td>
<td>0.039</td>
</tr>
<tr>
<td>Mean noradrenaline + SD, mg</td>
<td>3.11 ± 0.33</td>
<td>3.11 ± 0.34</td>
<td>0.661</td>
</tr>
<tr>
<td>Mean time from ED arrival to intubation ± SD, minutes</td>
<td>19.87 ± 7.39</td>
<td>19.14 ± 6.17</td>
<td>0.735</td>
</tr>
<tr>
<td>Mean intubation attempts ± SD</td>
<td>1.10 ± 0.31</td>
<td>2.09 ± 1.23</td>
<td><0.0001</td>
</tr>
<tr>
<td>Mean intubation time ± SD, seconds</td>
<td>3.84 ± 0.90</td>
<td>8.23 ± 4.74</td>
<td><0.0001</td>
</tr>
<tr>
<td>Stage 1 mean ± SD</td>
<td>65.87 ± 19.45</td>
<td>59.73 ± 17.40</td>
<td>0.242</td>
</tr>
<tr>
<td>Peri-intubation cardiac arrest, n (%)</td>
<td>5 (16.1)</td>
<td>9 (40.9)</td>
<td>0.065</td>
</tr>
<tr>
<td>Survival to ICU admission, n (%)</td>
<td>31 (100)</td>
<td>17 (77)</td>
<td>0.059</td>
</tr>
<tr>
<td>Mean ICU length ± SD, days</td>
<td>7.94 ± 3.63</td>
<td>15.00 ± 15.07</td>
<td>0.016</td>
</tr>
<tr>
<td>Survival to hospital discharge, n (%)</td>
<td>22 (71)</td>
<td>7 (31.8)</td>
<td>0.008</td>
</tr>
<tr>
<td>Survival at 90 days, n (%)</td>
<td>16 (51.6)</td>
<td>4 (18.2)</td>
<td>0.012</td>
</tr>
<tr>
<td>Survival at 180 days, n (%)</td>
<td>12 (38.7)</td>
<td>3 (13.6)</td>
<td>0.035</td>
</tr>
</tbody>
</table>

BMI, body mass index; CAGB, coronary artery bypass grafting; COPD, chronic obstructive pulmonary disease; ED, Emergency Department; Hb, hemoglobin; hsTnI, high-sensitive troponin I; ICU, intensive care unit; NA, nonapplicable; PCI, percutaneous coronary intervention; PPIIM, preoxygenation, pretreatment, induction/paralysis, intubation, and mechanical ventilation; STEMI, ST-elevation myocardial infarction; TIA, transient ischemic attack.

cardiac arrest within 1 hour of induction, ICU length of stay, survival to hospital discharge, and survival at 90 and 180 days. The stage 1 risk score was used for assessing in-hospital mortality risk.

Results

Study population

All PPIIM patients were admitted to the ED within 6 hours of first AMI symptoms. Of the initial 34 patients with cardiogenic shock, 5 (14.7%) suffered a monitored ventricular fibrillation cardiac arrest. Of them, 2 patients restored spontaneous circulation after immediate defibrillation and were included in the study. We analyzed 31 patients with a mean age (± SD) of 66.55 (± 12.43) years (Supplemental Fig. S1); 20 (64.5%) were male, whereas 22 (71%) and 9 (29%) were diagnosed with ST- and non–ST-segment elevation myocardial infarction, respectively. In addition, we analyzed 22 historical control patients. Mean age (± SD) was 67.4 years.
Oxygenation and intubation

The PPIIM protocol resulted in fewer intubation attempts and less time to intubation; all patients were intubated at first attempt, with the mean time (± SD) to intubation being 3.84 (± 0.90) seconds. The oxygenation technique improved initial PaO2, whereas after the onset of MV, PaO2 significantly increased until ICU admission. A repeated measures ANOVA with a Greenhouse–Geisser correction and post hoc tests using the Bonferroni correction revealed that mean PaO2 differed statistically significantly between the study phases (F1,23,37,128 = 28.169; P < 0.0001; Table 2, Supplemental Fig. S2). PaCO2 did not differ statistically significantly between time points (F1,405,42,139 = 0.589; P = 0.502; Table 2, Supplemental Fig. S2). The analysis of arterial oxygen saturation, peripheral capillary oxygen saturation, and respiratory rate is shown in the Supplementary Materials.

In the control group, oxygenation was improved after the onset of MV. Despite the worst oxygenation indices in the PPIIM group at ED admission, we found significant differences in PaO2 (85.80 ± 19.82 vs 164.73 ± 43.07 mm Hg; P < 0.0001) between the PPIIM and control group at 5 minutes of ventilatedation. Also, statistically significant differences were observed in PaO2 (119.84 ± 50.57 vs 179.50 ± 42.17 mm Hg; P < 0.0001) and PaCO2 (39.81 ± 10.60 vs 31.00 ± 9.30 mm Hg; P = 0.003) between the 2 groups at ICU admission (Table 3).

Hemodynamics

In the PPIIM group, we found no statistically significant changes in heart rate from ED admission until the onset of MV, whereas statistically significant changes were subsequently observed until ICU admission (P < 0.0001; Supplemental Fig. S4). Systolic arterial pressure was maintained constant from ED admission until 1 minute post-induction, after which a statistically significant increase was observed until ICU admission (F1,213,39,404 = 20.818; P < 0.0001; Supplemental Fig. S4). Diastolic arterial pressure was maintained constant from ED admission until 1 minute postinduction, after which a statistically significant increase was observed until ICU admission (F2,588,77,635 = 34.678; P < 0.0001; Supplemental Fig. S5). MAP was maintained constant from ED admission until 1 minute postinduction, after which a statistically significant increase was observed until ICU admission (F2,136,64,07 = 36.126; P < 0.0001; Supplemental Fig. S5).

In the control group, heart rate increased from ED to ICU admission, but no statistically significant differences were observed between the 2 groups. In addition, systolic arterial pressure was slightly improved, whereas diastolic arterial pressure and MAP decreased after RSI/MV in the control group. We found significant differences in systolic (85.32 ± 4.23 vs 71.72 ± 7.98 mm Hg; P < 0.0001), diastolic (58.84 ± 5.84 vs 39.05 ± 5.63 mm Hg; P < 0.0001),
Table 3. Hemodynamic and metabolic differences between the PPIIM and control patients

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ED admission</th>
<th>ICU admission</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPIIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory rate, %</td>
<td>100 ± 2.3</td>
<td>NA</td>
</tr>
<tr>
<td>Heart rate, bpm</td>
<td>110 ± 2.5</td>
<td>NA</td>
</tr>
<tr>
<td>SpO2, %</td>
<td>94 ± 1.4</td>
<td>NA</td>
</tr>
<tr>
<td>SAP, mm Hg</td>
<td>80 ± 1.2</td>
<td>NA</td>
</tr>
<tr>
<td>CVP, mm Hg</td>
<td>12 ± 1.2</td>
<td>NA</td>
</tr>
<tr>
<td>Lactate, mmol/L</td>
<td>3.9 ± 0.1</td>
<td>NA</td>
</tr>
<tr>
<td>Base deficit, mmol/L</td>
<td>0.6 ± 0.2</td>
<td>NA</td>
</tr>
<tr>
<td>Control group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory rate, %</td>
<td>100 ± 2.3</td>
<td>NA</td>
</tr>
<tr>
<td>Heart rate, bpm</td>
<td>110 ± 2.5</td>
<td>NA</td>
</tr>
<tr>
<td>SpO2, %</td>
<td>94 ± 1.4</td>
<td>NA</td>
</tr>
<tr>
<td>SAP, mm Hg</td>
<td>80 ± 1.2</td>
<td>NA</td>
</tr>
<tr>
<td>CVP, mm Hg</td>
<td>12 ± 1.2</td>
<td>NA</td>
</tr>
<tr>
<td>Lactate, mmol/L</td>
<td>3.9 ± 0.1</td>
<td>NA</td>
</tr>
<tr>
<td>Base deficit, mmol/L</td>
<td>0.6 ± 0.2</td>
<td>NA</td>
</tr>
</tbody>
</table>

and MAP (67.71 ± 4.90 vs 49.90 ± 5.66 mm Hg; \(P < 0.0001 \)) between the PPIIM and control group at 5 minutes of automated ventilation. Also, statistically significant differences were observed in diastolic (59.74 ± 4.93 vs 47.86 ± 11.47 mm Hg; \(P < 0.0001 \)) and MAP (68.65 ± 4.10 vs 60.23 ± 11.67 mm Hg; \(P < 0.0001 \)) between the 2 groups at ICU admission. The administered amount of noradrenaline until ICU admission did not differ between the PPIIM and control group (3.11 ± 0.33 vs 3.11 ± 0.34 mg; \(P = 0.661 \)). In addition, statistically significant differences were observed in hemodynamic and metabolic parameters between the PPIIM and control patients at ED admission, after 5 minutes of automated ventilator, and ICU admission (Table 3). The analysis of the remaining parameters of the PPIIM patients is shown in the Supplementary Materials.

Survival

Mean (± SD) stage 1 risk score was 65.87 (± 19.45). In the PPIIM group, survival to ICU admission, survival to hospital discharge, survival at 90 days, and survival at 180 days was 100%, 71%, 51.6%, and 38.7%, respectively. In the historical control group, survival to ICU admission, survival to hospital discharge, survival at 90 days, and survival at 180 days was 77%, 31%, 18%, and 13.6%, respectively.

Discussion

The current management of patients with cardiogenic shock complicating AMI is associated with a high rate of mortality, despite widespread regional implementation of rapid transfer to percutaneous coronary intervention-capable centres. Specifically, endotracheal intubation and MV in these patients is challenging and must be performed under particular pathophysiological disturbances. Our study is the first that evaluates a new RSI/MV protocol in AMI patients with cardiogenic shock. In our cohort, the PPIIM protocol proved safe and effective; it improved oxygenation and hemodynamics compared with historical controls, and was not associated with any procedure-related complication.

In 2015, Weingart et al. described a delayed sequence intubation technique that has some similarities with the PPIIM protocol. In the delayed approach, however, preoxygenation is initiated after administration of ketamine. Also, the administration of the induction agent is temporarily separated from the administration of the muscle relaxant, to allow adequate preparation. In contrast, the PPIIM technique does not separate these agents and allows preparation for a longer time. Considering that the delayed-sequence intubation should proceed to standard RSI when complications arise, the PPIIM might prove an optimal RSI/MV method in all critically ill patients.

The decision to incorporate apneic oxygenation into our protocol was on the basis of extensive literature searching. Apneic oxygenation is the passive flow of oxygen into the alveoli during apnea, occurring because of the differential rate between alveolar oxygen absorption and carbon dioxide excretion. This produces a mass flow of gas from the upper respiratory tract into the lungs. In the delayed approach of Weingart et al., the patients receive a muscle relaxant at 3 minutes of denitrogenation and then apneic oxygenation is initiated, with intubation following after 45-60
seconds. In our study, the simultaneous application of a standard nasal cannula together with a NRFM, both at 15 L/min, during the preoxgenation phase and the maintenance of the first during intubation provided an oxygen reservoir for use during induction and paralysis. This resulted in significant differences in oxygenation at 5 minutes of automated ventilator use and ICU admission compared with the historical control group. Sakes et al. reported that a starting oxygen saturation > 93% was associated with an almost fivefold increase in first pass success without hypoxemia, whereas Davis et al. reported that patients who had a starting oxygen saturation of ≤ 93% during prehospital RSI universally desaturated during the intubation attempt. In the control group, uncontrolled MV (various tidal volumes, respiratory rate, and/or higher FiO2) led to hypoxemia at 5 minutes of automated ventilator use and at ICU admission. However, hyperoxemia has been associated with adverse events. Considering the lower arterial PaO2 in the PPIIM group before intubation, our protocol significantly improves oxygenation while minimizing adverse events and especially hyperoxia, which induces vasoconstriction and reduces cardiac output.

Patients with cardiogenic shock are characterized by a fragile cardiovascular physiology, which is maintained by compensatory mechanisms. Consequently, the choice and dose of RSI medications are paramount to preserve or improve hemodynamics. In our study, drug administration started 3 minutes before induction with fentanyl 0.7 μg/kg over 30 seconds, to blunt the sympathetic surge that occurs with intubation. We chose this agent because of its high degree of lipophilicity, lack of histamine release, fast onset, short duration of action, and minimal respiratory depression if administered over 30-60 seconds. In addition, fentanyl enhances cardioprotection via its antiarrhythmic activity, especially in arrhythmias associated with ischemia-reperfusion injury, and by inducing pharmacologic preconditioning of the myocardium. As expected, administration of fentanyl neither aggravated hemodynamics nor hampered the favourable effects of nasal cannula and NRFM on oxygenation.

For the induction and paralysis, we administered midazolam 0.02 mg/kg, ketamine 0.35 mg/kg, 1% propofol 0.5 mg/kg slow I.V., and succinylcholine 0.8 mg/kg. Midazolam was used as the first induction agent at a 10-fold reduced dose than recommended followed by a subanaesthetic dose of ketamine. Ketamine causes brain dissociation, is associated with limited suppression of ventilatory drive, increases pulmonary blood flow and produces airway relaxation, provides analgesia, exerts sympathomimetic effects, and lessens the reuptake of catecholamines. Although ketamine can worsen hypotension and exacerbate myocardial depression in catecholamine-depleted patients, we did not observe such an effect. On the contrary, ketamine increased MAP and prevented exogenous vasopressor administration and their potential adverse effects, therefore improving outcome. Of note, the classical notion of cardiogenic shock with decreased cardiac output and increased systemic vascular resistance is currently debated and many patients die with a normalized cardiac output, which suggests other shock types, in the absence of infection. In our study, the ketamine-induced sympathetic stimulation modified circulatory shock and combated the unwanted side effects of the other drugs, enhancing hemodynamic stability. The favourable effects of ketamine might not be limited to the early postinduction period, but might be prolonged much after this time point, improving outcome and survival rates. Research has shown that ketamine might precondition the myocardium, enhance recovery of force after hypoxia-reoxygenation, and inhibit tumour necrosis factor-α and interleukin-6 gene expression in macrophages, therefore preventing further myocardial injury via anti-inflammatory effects.

Propofol protects the myocardium against ischemia and reperfusion injury, at least in part because of its antioxidant and free radical-scavenging properties. However, it causes hypotension in 25%-67.5% of patients independent of the presence of cardiovascular disease because of venous and arterial vasodilation, impaired baroreflex mechanism, and myocardial depression. The PPIIM protocol includes 1% propofol at a dose of 0.5 mg/kg slow I.V., which is much lower than currently recommended. Our experience has shown that patients with cardiogenic shock are largely relying on their compensatory mechanisms and propofol might aggravate hemodynamics despite its rapid clearance and short duration of action. Although in one study the choice of RSI induction agents was not related to outcome for ED patients who were subsequently admitted to the ICU, RSI-induced hypotension might increase mortality and morbidity rates.

Of note, the PPIIM protocol improved hemodynamics compared with standard RSI, which is very important considering the worse hemodynamic status of the PPIIM patients at ED admission. Our results show that the synergistic action of the PPIIM agents enhanced their favourable actions and diminished their adverse effects, stabilizing and improving hemodynamics in our study.

Despite substantial improvements in the treatment of AMI, the prognosis for patients who deteriorate into cardiogenic shock remains poor. In a recent retrospective analysis, there was an increase in the prevalence and the adjusted odds of mortality in patients with early cardiac arrest/intubation on presentation (odds ratio, 3.1). In another analysis, multivariable adjustment revealed an odds ratio for in-hospital mortality of 3.4 for patients with a cardiac arrest/intubation delay. Also, Zuin et al. investigated the incidence of postintubation hypotension in hemodynamically stable patients with ST-elevation AMI requiring RSI using 1 mg/kg ketamine or 0.3 mg/kg midazolam and 1.5 mg/kg succinylcholine. The authors reported that hypotension was observed in 27.9% of their patients, with administration of midazolam resulting in a significantly lower systolic blood pressure at 5 as well as at 10 minutes after induction compared with ketamine (97.75 ± 8.06 vs 100.81 ± 8.08; P = 0.029 and 92.83 ± 7.53 vs 101.58 ± 7.29; P < 0.0001, respectively). In addition, a significant higher heart rate frequency was present at each time observation in the midazolam cohort compared with the ketamine ones (P = 0.001 and P < 0.0001, respectively), whereas no bradycardic responses were observed. Of note, the authors evaluated RSI in stable conditions.
AMI patients after primary percutaneous coronary intervention and therefore, our patients were sicker than those in the study by Zuin et al.65

Despite the nonsignificant difference in stage 1 risk score, outcomes were markedly different between the PPIIM and control group, which might be because of downstream management. However, the careful selection of the control group ensured that both groups received the same standard therapy after admission to the ICU. Considering that the mean stage 1 risk score in the PPIIM group implies that in-hospital mortality was expected to be > 60%,56,60 the improved survival in PPIIM is of major importance, especially if we take into account that the mortality from cardiogenic shock complicating AMI has been reported to be 45.4%-81%.1 Also, the most common cause of death after cardiogenic shock is pump failure, which often occurs within days after the event.47 Although evidence suggests that supplementary oxygen might be harmful after AMI,67 we may hypothesize that our protocol had a favourable effect on patient outcome and survival rates by improving oxygenation and hemodynamics and preventing further end-organ damage.48,49 Of note, the PPIIM protocol improved hemodynamics at 5 minutes of automated ventilator use and at ICU admission. Although we did not observe a statistically significant difference in systolic arterial pressure at ICU admission between the PPIIM and control group, the most impressive difference at this time point was the increase in diastolic arterial pressure, which not only drove the improvement in MAP but likely enhanced coronary perfusion in the PPIIM patients. These results might possibly indicate that short-term hyperoxemia until ICU admission might not be harmful, especially if hemodynamic optimization is preceded. Nevertheless, we plan a large prospective, randomized double-blind, multicentre controlled trial to assess the effectiveness of our protocol.

Our study has several limitations. Although we included a small number of patients from a highly selected population, it was an observational pragmatic cohort from the ED in a tertiary centre. Also, our patients were monitored via invasive blood pressure assessment, which minimized the possibility of undetected postintubation hemodynamic changes. To minimize bias, the attending physicians were blinded to measurements until the end of the study and all data were analyzed. Also, an independent enrollment research staff was responsible for obtaining data collection from the emergency medical services field medical record, as well as for exclusion of all patients not meeting inclusion criteria. All of these, together with the study’s careful design minimize the effect of other influential factors and enhance the potential generalizability of our findings. Furthermore, the hemodynamic data might have been influenced by the administration of low-dose noradrenaline. However, this is a common practice in mechanically ventilated patients and depriving vasopressors when indicated would be unethical. Nevertheless, the cumulative dose of noradrenaline did not differ between the 2 groups. In addition, the significant improvements in AMI care, cardiogenic shock strategies, and general critical care so far might have contributed to the improved outcomes in our study. Because patients with cardiogenic shock are a difficult population to study, we had to include all consecutive patients who fulfilled the inclusion criteria during the study period. In the control group, we were not able to collect all of the data or end points, but we could extract several hemodynamics and metabolic parameters and were able to compare mortality rates. Also, the selection of the control group ensured that both groups received the appropriate therapy after admission to the ICU.

In conclusion, RSI with the PPIIM protocol allows safe intubation of AMI patients with cardiogenic shock and improves hemodynamic and oxygenation parameters. Our results must be evaluated in a multicentre trial investigating superiority over standard of care.

Funding Sources
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Disclosures
The authors have no conflicts of interest to disclose.

References

Supplementary Material

To access the supplementary material accompanying this article, visit the online version of the *Canadian Journal of Cardiology* at www.onlinecjc.ca and at https://doi.org/10.1016/j.cjca.2018.04.015.